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Abstract. The quantum mechanical amplitudes for a free, non-relativistic particle moving 
on a finite-dimensional, homogeneous space 9 /3  are derived by applying first class 
constraints to a particle moving on the Lie group Y, where the amplitudes are already 
known exactly. This requires gauge fixing, and gauge invariance of the final result is ensured 
by invoking ERST symmetry and employing ghosts. 

1. Introduction 

Anti-commuting ghost fields were introduced into field theory in an attempt to construct 
a sensible quantum theory of the gravitational and non-Abelian Yang-Mills fields. 
They were found to be necessary in order to maintain unitarity once the gauge is fixed 
[ l ,  21. More recently it has been realized that they have a perfectly reasonable classical 
interpretation [3,4] as 1-forms on the group of all possible gauge transformations, 
hence their anti-commuting property [5]. Since gauge symmetries are a sign of first 
class constraints in phase space, [6], ghosts always play a role in systems with such 
constraints. This is true not only in field theories with an infinite number of degrees 
of freedom but also in finite-dimensional systems with first class constraints. Indeed, 
for classical systems, ghosts are even necessary in order to implement reparametrizations 
of the constraints as canonical transformations (in an extended phase space involving 
ghost degrees of freedom) [3,7,8]. 

When quantizing systems with constraints, one has to decide whether to remove 
the unphysical degrees of freedom first and only quantize the true degrees of freedom 
or to quantize the unconstrained system first, including the unphysical degrees of 
freedom, and only project out the true physical degrees of freedom after quantization. 
Often these two procedures appear to lead to different results. In many situations 
quantization of the unconstrained system is easier and so this is the path of least 
resistance, but the only way to be sure that one has arrived at the correct quantum 
theory is to follow the former course and remove the unphysical degrees of freedom 
first. It was shown in [7,8] that, at least for finite-dimensional systems with first class 
constraints linear in momenta, these two procedures can always be made to commute 
provided the measure on the Hilbert space of the unconstrained systems is chosen 
properly, its form being dictated by the constraints themselves. The physical Hilbert 
space is then identified with a subspace of the extended Hilbert space of the uncon- 
strained system (extended to include ghosts for the constraints). 
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The purpose of this paper is to point out there is a large class of examples for 
which the construction of [7,8] can be applied, namely non-relativistic free particles 
moving on homogeneous spaces ./M = Y/%, where Y is a semi-simple Lie group and  
9? c Y a Lie subgroup. The quantum mechanics of particles moving on homogeneous 
spaces has already received much attention in the literature [9-131 but none of these 
approaches has emphasized the role of ghosts, which plays an important part in 
ensuring that quantizing first and  then reducing commutes with reducing first and then 
quantizing. The basic strategy is to treat the particle moving on Y / B  as a constrained 
system by applying constraints to a particle moving on Y,  where quantum mechanical 
amplitudes can be calculated exactly [ 14-16]. It will be shown that the Cartan-Killing 
metric on Y gives the correct measure for the Hilbert space X f  of the unconstrained 
system for a particle moving on 9, as defined in [7]. R f  is then extended to include 
ghosts for the constraints, giving an  extended pseudo-Hilbert space gf, and the physical 
Hilbert space of 9/9?, denoted by X r l A ,  is obtained by projecting out the physical 
subspace Xy, ,  = Rphys c X y  of X f .  This projection requires a gauge choice to remove 
the unphysical degrees of freedom, but the construction of [7 ,8]  ensures that the final 
result is independent of this choice. Thus the quantum amplitudes for a particle moving 
on Y/% can be obtained unambiguously from those of a particle moving on 9, which 
are known exactly [14, 151. 

As an  illustration of the technique, we treat the example of a 2-sphere, SU(2) /U(  1). 
This particular example is already well studied and the results presented here are not 
new, but the method of deriving them is different and it exhibits clearly the role of 
the ghosts. 

In the second section, the relevant aspects of constrained, finite-dimensional Hamil- 
tonian systems and classical BRST ghosts are reviewed. The exposition follows closely 
the treatment in [3]. The third section deals with the quantum mechanics of systems 
with first class constraints linear in momenta, as developed in [7,8]. In section 4, these 
analyses are applied to a free, non-relativistic particle moving on 9/22. Section 5 treats 
the explicit example of SU(2) /U(  1 )  using these techniques, and  finally the results are 
summarized in section 6. 

* - 

2. Classical constrained Hamiltonian systems 

Consider a free, non-relativistic particle moving on an  N-dimensional curved manifold 
9, with coordinates Q", a = 1 , .  . . , N, and invertible metric Gop(Q) .  The Lagrangian 
is 

The phase space of SF, 9= T * ( Y ) ,  has a natural symplectic structure, and the 

(2) 

If we now apply d constraint equations, ai( Q, P) = 0, i = 1,. . . , d, to 9 we get a 
( 2 N  - d)-dimensional manifold %. (To avoid unnecessary complications, it is assumed 
that the constraints are irreducible.) I f  % is itself a symplectic manifold, with symplectic 
structure inherited from 9, then the constraints 0, are called second class. If % is 
co-isotropic (this means that there exists a canonical transformation to a coordinate 
system ( Q " ,  Po) on ?? such that % has the same number of coordinates Q as 9 but 

Hamiltonian is (with coordinates ( Q " ,  Po) on 9) 
H = ;Gap( Q) P, Po. 
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only N - d coordinates P, or  vice versa) then the constraints are called first class. The 
standard test for first class constraints is to compute all their Poisson brackets among 
themselves, i d ( d  - 1) of them. If these can all be written as linear combinations of the 
original constraints, @,(Q,  P ) ,  then they are first class. In other words 

(3)  

where the ‘structure functions’ C( Q, P),,A are, in general, functions of Q“ and Po ( {  , } 
here denotes the Poisson bracket in 9). For a general constrained system the constraints 
will be a mixture of both first and second class types, but in this paper, only first class 
constraints will be considered. 

The constrained manifold % can be further constrained to the reduced phase space 
in the following way [3]. Let F ( Q ,  P )  be a differentiable function on 9’. Then define 
d vector fields CP, on 9’ by 

{ @ I ,  @,} = C ( Q ,  P)!,h@h 

CP,F = {@,, F } .  (4) 
The algebra of these d vector fields, obtained by taking Lie derivatives, does not close 
in general since 

[a,, * , lF~@,@,~-@,* ,F=  C,,’(Q0, P ) @ L F + @ L { C , , ~ ( Q ,  PI, F } .  ( 5 )  
However their algebra does close on the constrained manifold (e, where Ok vanish. If 
the C,,‘(Q, P )  are actually constants independent of Q“ and Pa, then the algebra of 
CP, closes everywhere in B and they are generators of a d-dimensional Lie group, 24. 
For our purposes, only constant C,,k need be considered, so this will be assumed from 
now on. The constraints then generate an  action of the group 3 on %. Factoring out 
by this action gives the reduced phase space, the true phase space of the constrained 
system, see figure 1. 

Figure 1. Factoring out  the action of the group 2 
on % in order  to obtain the true phase space of the 
constrained system. 

An explicit representation of the reduced phase space can be obtained by choosing 
a gauge. This requires d functions x’( Q, P )  on 9 whose Poisson brackets with @, are 
non-vanishing on %. The submanifold of % on which xi vanish is a symplectic manifold 
which is the phase space of the constrained system (provided the gauge conditions 
can be globally well defined and  there are no ambiguities of the Gribov type [ 171). In 
general this will be the phase space for a free particle moving on a manifold ,.U of 
dimension n = N - d which can be embedded in 9. Denote a local coordinate system 
on ,.U by qp, p = 1,. . . , n, with Riemannian metric g,, which is the pull back, under 
the embedding, of GaD.  The dynamics of this system could equally well have been 
obtained directly by considering the Lagrangian 

2e(q, 4 )  = fg&f)4”4’  ( 6 )  
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leading to the Hamiltonian 

where ( q F ,  p , )  are coordinates on the 2n-dimensional phase space, T * ( A ) .  
Of course any linear combination 

@, = > A , ' ( Q ,  PI@,  (8) 

is also a set of constraints which picks out the same submanifold % of 9 as a,, 
provided det h # 0. It is in general not possible to implement the transformation (8) 
as a canonical transformation on 9. However, as demonstrated in [3], if the phase 
space 9 is extended to include ghosts, it is possible to implement (8) as a canonical 
transformation in the extended phase space. Introduce a classical anti-commuting ghost 
coordinate 77 '  for each constraint @,. Then extend the configuration space Y to g by 
including the ghosts. Local coordinates on 9 will be denoted by (Q",  7' ) .  Momenta 
conjugate to the ghosts are represented by p, with graded Poisson bracket 

( 7 7 ' 9  P,} = a', ( 9 )  

and phase space is extended to @ with coordinates (Q" ,  T ' ,  Po, p , ) .  @ has a graded 
structure in that any element can be uniquely split into terms with definite ghost 
number, where the 77' have ghost number 1 and the p ,  have ghost number -1. The 
transformations (8) can be realized as canonical transformations on @. 

Physical observables of the constrained system are represented as functions F (  Q, P )  
on  9 with the special property that 

{F,@.,}  = F,'@, (10) 

for some functions F,', i.e. the Poisson bracket of F with the constraints vanishes on 
the constrained manifold %. F is then gauge invariant on % and a, generate gauge 
transformations. Any such observable is invariant on % under the change 

F -$ F -k F ' @ ,  (11) 

for arbitrary F' .  

1 on @, called the BRST operator: 
For any set of first class constraints, one can construct a function with ghost number 

R = 7'0, + ~ ' v ' p ~ C , , ~ (  Q, P )  + terms which vanish when Cl,'( are constants (12) 

which has the property that its graded Poisson bracket with itself vanishes 

{R, a} = 0. (13) 

Any gauge invariant observable F (  Q, P )  on 9 can be extended to a ghost number 
0 function f on 8, called a BRST extension of F, for which 

{F, R} = 0. (14) 

Equation (14) does not determine F uniquely, but only up  to a term of the form 
{R, W} where W is any ghost number -1 function, i.e. if F, is one BRST extension of 
F then 

F*=F,+{a, W }  ( 1 5 )  
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is another, which also satisfies (14) (since {a, {a, W}}=O by the Jacobi identity and  
nilpotency of (13)). Thus, gauge-invariant functions on % are in one-to-one corre- 
spondence with the elements of the ghost number 0 cohomology class of f2 on @. 
Explicitly, a BRST extension of F is given by [4] 

(16) = F +  v'F,'p, + higher-order ghost terms. 

3. Quantization of constrained systems 

The aim is to quantize the particle moving on A, As mentioned in the introduction, 
there are two ways of doing this. 

( i )  Reduce first and  then quantize, i.e. work directly with ht or  T * ( A ) ,  introduce 
a Hilbert space X f 4  and quantize h(  q, p )  on X f c .  

( i i )  Quantize first and then reduce, i.e. introduce a Hilbert space LXf, quantize 
H ( Q ,  P )  on Xcf and then try to project down from XTf to X f 4 .  

In many circumstances, it is much easier to quantize a particle on Y than one on 
A in which case route (ii) is the best way to proceed. However, one often runs into 
difficulties with these two procedures and can end up  with different quantum mechanics, 
depending on which route is adopted. It is shown in [ 7 , 8 ]  that, at least when the 
reduction can be implemented via first class constraints linear in momenta, these two 
routes can be made to commute by introducing ghosts, extending Xy to a (pseudo)- 
Hilbert space, gY, and then projecting out the physical Hilbert space X M  = Xphys c gY 
from It is emphasized in [7] that this process is only consistent if the Hilbert space 
metric on Xy is the pull-back of that on X f 4  under the projection from Xcf to the 
physical Hilbert space. The rest of this section is devoted to an explanation of the 
construction of the extended (pseudo)-Hilbert space and its physical subspace, as 
described in [7,8]. 

One problem that we have to face is that of factor ordering in the Hamiltonians. 
We shall adopt one which is adapted to the Schrodinger representation. 

Take the quantum Hamiltonian, h*(q, p ) ,  on X t f  to be 

with g = det g,". (17) h* = ~ $ - I / l p l , g * l / 2 g * 1 ~ ~ p l ~ g * - 1 : 4  

In  the Schrodinger representation this is 

where 

pl,, = -i(d, +fa, In 4) (19) 
and  0 is the Laplacian on A. 

as the Hilbert space metric. Thus 
We can represent the Hilbert space X t t  in the coordinate basis / q )  and use g , , ( q )  

1 
(q ' Iq)=-  S ' " l ( q ' - q ) .  4 

The states are then 
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where $( q )  is a square integrable function on .U, and d p  ,, = fi d"q is the measure 
on 2tf( (with this measure $ p ,  as defined in (19), is Hermitian). The Hermitian inner 
product between two states is 

(ILIIILJ = 1 $ T ( q ) $ r ( q )  d p  I , .  ( 2 2 )  

In the particular instances when the constraints are linear in momenta, Z,, can 
also be derived from Zf as follows. Let I Q )  be the coordinate basis for 2f,y and 
introduce a measure, d p f f ,  on Y defined as in [ 7 ] .  With 

(23)  

= @ , e (  Q ) P e ,  define 

O O I  . .e,,  = &el . . . a , , p l  .p,$)lpl . . . @do'' 

where is the totally antisymmetric density with E , . . . , ~  = 1 and  

l ! @ l l - 2 = -  @~l , , , e , ,Ge~p~  . . . G"~*P~l@,I,. p,, . 1 

n !  ( 2 4 )  

gives the required measure on 2f?,) and its extension kf. It is emphasized in [ 7 ]  that 
it is not actually necessary that Gap have an inverse in order to define the measure 
d p C f .  In particular, if l l @ l l  # then procedures ( i )  and  (ii) above d o  not commute, 
and  indeed many examples in the literature of this non-commutativity are traceable 
to this inequality. 

Having defined the measure on Ref, the basis states are now normalized to 

1 ( Q ' I  Q )  = - a'"( Q ' -  0). 
II @ / I  

The states are then 

I*) = WQ)IQ) dP:/ 

where 9( Q) is a square integrable function on 9. The Hermitian inner product between 
two states is 

(28) 

The extended pseudo-Hilbert space 2k, has coordinate basis IQ; i , ,  . . . , if) where 
p = 1 ,  . , . , d, and inner product [8] 

( Q ' ;  i i , .  . . , iJQ; I , (  0'1 0) (29) 
all others vanishing. @<, has N commuting coordinates and d anti-commuting coordin- 
ates. Note that ( Q ' ; / Q ; )  = 0, where 10;) is a ghost number 0 state. The ghost number 
p basis states, I Q ;  i , ,  . . . , i,), can be thought of as being obtained from IQ;) using 
Hermitian ghost creation operators, ;7 = ;7' 

, .  . . , i d ) =  E ' I , + ~ ~ ~ - ' ~ ~ ~ ' I . - '  

I Q ;  i , ,  . . ' 9 i,) = i i , , ' 3 . +jJQ;). 
The states in grf can thus be written as 
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We are using here a Schrodinger representation for the ghosts, where the conjugate 
momenta would be anti-Hermitian p  ̂ = -p^' represented by 

Strictly speaking, gY is a pseudo-Hilbert space, not a true Hilbert space, because 
the metric is not positive definite, the ghost sector has invariance U(2d-1 ,  2d-- ' )  rather 
than U(2d) .  

To project out the physical Hilbert space of the constrained system it  is necessary 
to choose a gauge, though the final result is independent of this choice. Let x ' ( Q ,  P )  
be a gauge choice. Then x p h y s C  gY is the space of states of the form 

which, in addition, are annihilated by 6, i.e. {a, 'U( Q)} = 0. Here Ix, @I is the modulus 
of the determinant of the d x d matrix of Poisson brackets {x', QJ}.  It is shown in [8] 
that these states are BRST invariant. The physical Hilbert space defined here does not 
have ghost number 0. To be more precise, one should introduce anti-ghosts f r  and 
conjugate momenta p '  and further extend the pseudo-Hilbert space to a space with basis 

IQ; i l  , . . . ,  i p ; j l  , . . . ,  jp , )=7j ' l  * . . ?'I,+,, . . . +,(,IQ;;) (34) 

which have ghost number p - p ' .  The ghost-anti-ghost sector has invariance 
U(22d-',  22d-') .  Then the physical states are constructed as 

with {a, 9( Q ) }  = 0, which do have ghost number 0. The anti-ghosts are an unnecessary 
complication for our purposes and shall be ignored in what follows. 

As noted above, it is not necessary that GOP have an inverse in order to define the 
measure on 9. However, when it does have an ilnverse we can express the dynamics 
on g9 as follows. The Hamiltonian operator, Z?, on gY is obtained from the BRST 

extension (16) of the Hamiltonian, A, on XY. For the latter the same factor ordering 
is adopted as for A, 

(36) = - I / 4em 6 1 / 2  6 O P  Fp& - 1 i 4  

where G = det G,, . As before, in the Schrodinger representation with 

e, = -i(aR +;a, In dZ) ( 3 7 )  

this is 

where 0 is the Laplacian,on 9. 

ordering, which will not be relevant here, see [8]). 
For the Hamiltonian fi, on &,,, use the BRST extension of (38) (for details of factor 



4446 B P Dolan 

4. Quantum mechanics on coset spaces 

Our intention is to apply the formalism of the previous section to the problem of a 
particle moving on the space of cosets of a (compact) N-dimensional semi-simple Lie 
group 9 with respect to the left action of a subgroup 9 (of dimension d ) .  The left 
action of 3 on Y induces a fibration of Y leading to the fibre bundle structure 

9-9 

91 9 
with total space Y, fibre 9, base space 91% and projection 7.919 is the configuration 
space of the physical system which was called At in the more general situation 
considered in the previous sections. 

Let G be the Cartan-Killing metric on Y and g the Y invariant metric on 9'19 
obtained by pushing G-' forward by the projection 7, i.e. given G, define g by 

T*( G-') = g-' (40) 
where G-' and g-' are rank-2 contravariant tensors on Y and 919, respectively. Then 
the pull-back of g to Y is Y invariant, since g is. Since G is the unique Y invariant 
metric on Y (up to a constant normalization), we have 

r * ( g )  = G. (41) 
Hence, in the quantum theory, the Hilbert space metric on 2f& is the pull-back of that 
on X9,% and the construction of [7,8] can be applied, with I (@\ /  = m. 

Let KA = K A o ( Q ) d o  be Killing vectors on Y which generate the Lie algebra of Y, 
A = 1,. . . , N, 

[ K A ,  KB1= CAB'KC. (42) 
On a semi-simple Lie group the Killing vectors can always be chosen to be orthonormal 
so that in a coordinate basis the (inverse) Cartan-Killing metric is 

G-' = SABKAKB (43) 

GOP = KAO ( Q)KsP( 0)s"". 
or in components 

(44) 
The Y invariant metric g on 9 can be obtained as follows [18]. Denote the elements 
of 9 by s, then s-' ds, where d is the exterior derivative on 9, is a Lie algebra valued 
1-form in T * ( Y )  and can thus be decomposed as 

(45) 
where TA are the generators of the Lie algebra of Y, T, are the generators of the Lie 
algebra of 3 ( i  = 1, .  . . , d )  and T,,, span the complement of the Lie algebra of 3 in 
the Lie algebra of Y ( m  = d + 1, . . . , N ) .  Then e A  are orthonormal 1-forms for G 

G = eAeBSAB (46) 

s-' ds = eATA = e 'T.  + e"T, 

and e m  are orthonormal I-forms for g 

g = emenSmn.  (47) 
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This means that the measure on Y decomposes into the product of the 9-invariant 
measure on 9/24 and the measure on 9. To see this, choose coordinates (Q") = 
( Q " ,  q p )  on 9, where 5 = 1, .  . . , d are coordinates on 9. Then 

(48) 

(this is always possible, since e"' are orthonormal 1-forms for 2 4 ) .  Thus, as a matrix, 

e' = e'" dQ" + e',  dq" e" = e", dq" 

so 

a = det( e A , )  = det( e'*) det( e"") = (50) 

where = det GBa, with G6p the Cartan-Killing metric on 24, In other words 

dkCLy = d ~ a  d ~ y l a .  (51)  

aABeBe = G, ,K ,~ .  ( 5 2 )  

Of course eAm are related to the Killing vector components KAu by 

Thus the Hilbert space measure on %,y simply decomposes as a product as in (51) 
Now the quantum Hamiltonian operator on Xy is, using (38) ,  

1 
aABa,  (G ( Q ) @  ( ) =-- 

2 G  

= -1K 2 A B  K aAB. (53) 

Here we have used the fact that K A u ( Q ) . ,  = 0 and K A m ( Q ) a , G =  0, since KA are 
Killing, leading to 

(54)  
1 

KA=(Q) ; ,  = ~ d , ( K A " ( Q ) G ) = a " K A n ( Q )  = O .  

Note that we also have 

K A ~ ( Q ) @ ~  =-iKAm(Q)(dCL +:au I n n ) = - & .  ( 5 5 )  

Let the d vector fields K, on 9' generate the subgroup 24. Classically we can obtain 
the reduced phase space for a particle moving on 9/24 by first applying the constraints 

= K," (Q)P,, linear in momenta, to obtain the constrained space % and then factoring 
out by the orbits of the action, under Poisson bracket operation, of the constraints on 
%' itself. The constraints are automatically first class, with structure constants, because 
9 is a Lie group 

{@I$ @,I= CUk@k* (56 )  

In the quantum theory, the constraints become operators on qcf 

6, = -iK, = -iK,"(Q)a,. (57) 
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Being Killing vectors, these constraints all commute, using Poiss!n brackets, with the 
Hamiltonian fi, (38), hence we can take the BRST extension of H (16) to be trivial: 

f i = - - ’ K  2 A B  K a A B  ( 5 8 )  

independent of the ghost fields. 
Note that since we have chosen K , ,  . . . , Kd to be orthonormal, it is guaranteed 

that the measure /I K 11 dNQ, obtained by the procedure outlined in the previous section, 
( 2 5 ) ,  will be the same as the naive one 

A coordinate basis for the space of physical states within &y can be obtained as 
follows. Choose a cross section, x : 9/24 -+ 9, of the above fibre bundle. Thus for every 
point c E 9/92 choose (in a smooth fashion) an element ~ ( c )  = s E Y in the coset of 
Y represented by c. This is equivalent to choosing a gauge and can be represented 
more concretely by d gauge functions x i (  Q“),  which are independent of the momenta 
P,. Then the state 

A 

dNQ. 

is annihilated by h. The integral here is over all r E 99 while q represents the coordinates 
of the point c E 9/24 and the semi-colon is meant to remind us that lq; )x is a state in 
the extended Hilbert space gy. The state / q ; ) x  is automatically independent of the 
choice of cross section, by the results of [7,8], and is normalized so that 

(60) 
1 

x (q ’ ; l q ; ) x  =- a‘% --(?’I. 4 
Any physical state can be written as a linear combination of (59). 

which is much easier to calculate. In particular 
The time evolution of / q )  can now be obtained from the time evolution of lq;)x 

(61) 

where (q’lh*lq) are the matrix elements of the Hamiltonian in Ry,B. The quantum 
mechanical amplitude for a particle moving on Y/B can now be written in terms of 
( q ’ l i l q ) ,  but is more easily evaluated using x (q ’ ;  IAlq;),. 

Consider the amplitude, (q ’ ,  t‘lq, t ) ,  for a particle to go from the state 14’) at time 
t ’  to the state Iq )  at time t :  

(s” = x ( 4 ’ ;  I f i  Is;), 

(4’9 tlq, t )  = x ( 4 ’ ;  t‘lq; ox 
A 

=,w; Iexp[ifi(r’- t)llq;)x 

=+ I, { ( Q ’ ( s ’ r ’ ) ;  lexp[i i ( t ’ -  t ) ]  

X i 3 d ( d - I ) / 2  ( d l  8 (x’)lx, KIIQ(sr); 1,. . . , k )  

+ ( Q ’ ( s ’ r ‘ ) ;  I , .  . . , d/i-3d‘d-’J’2tj‘d’ (x“)lx’, K‘I 
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where the inner product on the extended Hilbert space, equation (29), has been used. 
Note that, in arriving at the last line of (62), i t  is crucially important that the gauge 
conditions ~ ‘ ( 0 )  be independent of the momenta, Pa. 

Now 

(Q’(srr’)Iexp[ifi(rr- ~ ) I I Q ( s ~ ) )  =(Q’ ,  t’IQ, t )  (63) 

is the amplitude to go from IQ’) at time t‘ to IQ) at time t on Y and is known exactly 
for Lie groups [14, 151. Thus we arrive at the final result 

r r  

for the amplitude ( q ’ ,  r’lq, t )  for a particle to propagate from q to q’ on Y / %  in terms 
of the known amplitudes (Q’,  t’l Q, t )  for propagation from Q to Q’ on 9. 

By way of demonstration, we shall now apply this machinery to an explicit example. 

5. An example: SU(Z)/U(l) 

To illustrate the procedures described in the preceding sections, consider the simple 
case of the symmetric space S 2  = SU(2)/U( 1). The results of this section are not new 
as the quantum mechanics of a particle moving on S 2  have been treated before (see 
for example [ 12, 16, 191) but they give a simple example of the techniques developed 
in this paper for more general coset spaces. It will be shown that the energy eigenfunc- 
tions for a free particle moving on the 2-sphere (which are just the Legendre poly- 
nomials, <(cos 7 ) )  can be obtained from those of a free particle moving on a 3-sphere, 
sin K/sin r, by the techniques of section 4 (r  is the geodesic distance between two 
points on s’). 

Since SU(2) = S3 we first of all consider the geometry of S3. This is easily described 
by embedding S’ in R4= e’. Let (x, y, z, t )  be Cartesian coordinates for R4 and 
( x  + iy, z + i t )  be complex coordinates for C 2 ,  then the Euler angles 0 s 0 s r, O G  4 G 27r 
and 0 s CC, < 4 r  on S’ are defined by 

z + i t  = r sin(e/2) exp[i($-q!J)/2] (65) 

where 0 s r < cc is a radial coordinate. The SU(2) symmetric metric on the S’ of unit 
radius is obtained by setting r = 1 in the Euclidian metric on C2: 

ds2 =![de’+~os~(0/2)(d1,b+d4)’+sin’(e/2)(dlC,-d~)~].  (66) 

x + iy = r cos( 0/2) exp[i( CC, + 4)/2] 

The orthonormal Killing vectors for this metric are 

cos * 
sin rl, a, - - ad + 

sin 0 tan 6 a,) 

cos a, +- a, -- a,) sin 4 sin 4 
sin 0 tan e 

K3 = 2a, 

with the usual SU(2) algebra 

[ K A ,  K , ]  = -2&AB‘‘KC. 
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The Laplacian can be written as 

cl = 1 K A K A  
A 

4 1 1 (a, -ab) ’ .  (69) 
sin2( 8 /2)  ( a @ + a d 2 +  -- - a,(sin 8 a , )+  

sin 8 COS’( 8/2) 

In order to avail ourselves of the results of [ 14, 151 for the path integral on a group 
manifold (in this case SU(2)), it is necessary to change to a coordinate system which 
is designed to exhibit the geodesic distance between two points. Let n  ̂ be a unit vector 
in R4 = @’, which represents a point on S3. n̂  has components 

(70) 

where 9, = f ( $ * 4 ) .  Then the geodesic distance between two points on S3,  n  ̂ and f‘, 
is given by where 

n̂  = (COS( 8 /2)  cos $+, COS( 8 /2)  sin $-, sin( 8 /2)  cos I+- ,  sin( 8 /2)  sin I+-) 

cos l- = n^’ - n  ̂ = cos (:) cos (;) cos($+ - $L) +sin (is) sin ($) cos( $- - $’). (71) 

Because of the symmetry of S3, 6 can be taken to be the north pole, (x, y ,  z, t )  = 
(1 ,0 ,0 ,  O ) ,  ( r ,  8, 4, I)) = (1, 0, 0, O ) ,  without loss of generality. This gives the definition 
of a new coordinate system, (r, $L, $’). In these geodesic coordinates, the Laplacian 
takes the form 

Spherically symmetric eigenfunctions of this Laplacian, independent of $: and $I, 
are given by sin I r / s in  with 

1 = 1 ,2 ,3 ,  . . . . Thus the energy eigenvalues are E, = f( 1’- 1). 
The exact finite-time amplitude for a unit mass particle on the unit S3 to go from 

the north pole at time t to the point (e ‘ ,  4’, $’), a geodesic distance r away from the 
north pole at time t ’  is [14-161 

where the coordinates (r, C L i ,  4’) are related to (e ’ ,  4‘, $’) by cos r = cos( 8 7 2 )  cos +$. 
The normalization is determined by demanding that, when t = t’, the amplitude is a 6 
function, which gives unity when integrated over S3. 277’ is just the volume of the unit 
3-sphere. 

To relate this to the exact finite-time amplitude for a particle moving on Sz a single 
( d  = 1)  gauge choice is necessary. We will choose the gauge condition (in coordinates 
(6 ,  4, CL)) 
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The U(1) orbits of 24 are generated by 

a A 

a* 
K ,  = 2 -= 2iP, 

with Faddeev-Popov determinant Idet{,y, K3}(  = 2. Putting this gauge condition into 
the equation for coset decomposition of orthonormal 1-forms (45) and using the explicit 
metric on S3 (66), we see that it projects the three-dimensional sphere of unit radius 
to a two-dimensional sphere of radius f. This is just the standard Hopf fibration of 
the 3-sphere. With this gauge choice, the measure on U( 1) = 24 is just d+/2. 

The relative normalizations of the metrics on S2  and U ( l )  can also be obtained 
from the analysis of [7] as described in section 3. Using the definition of the measure 
on gY (equations (23) and (24)) with 

K ,  = 2P, ( 7 7 )  

and GAB given by the inverse metric of (66) 

i 0 0 
l /sin e -cos @/sin2 6 

-cos 8/sin2 e l/sin e 

we find 

/ J K I I = $ s i n e = J G .  (79) 

Thus, if the measure on S 2  is dp:y,A = a  sin 6 dB d4 ,  then the measure on 3 is d p a  = 

Note that the two cases of the function ,y in equation ( 7 5 )  are necessary in order 
to project out the whole of S 2  from S 3 .  The range 0 s  + < 257 would only give one 
hemisphere of S 2 ,  as an examination of (65) with r = 1 shows. This is an inevitable 
consequence of the fact that S’ is a non-trivial U ( l )  bundle over S 2  and means that 
,y has two zeros on each gauge orbit instead of one. Because of this an extra factor of 
a half is required in the normalization of the states, as described below. 

Let q be the point on S 2  corresponding to the coset of SU(2) containing the point 
(e ,  4, $) of S3 and q’ be the point on S 2  corresponding to the coset containing the 
point (e ’ ,  4‘, +’) of S3. Then, by the analysis of section 4 and equation (64), 

(4,  t‘I4, t )  = x ( q ’ ,  t‘;lq, t ; ) x  

= $  Io4* (e’, 4’ ,  $‘I exp[ifi(t’- f)lle, 4, $ ) ( S ( x ’ ) + 6 ( x ) )  d$ d+’ (80) 

where an extra factor of a half has been inserted to allow for the fact that the gauge 
fixing function, ,y in equation (751, has two zeros on each gauge orbit. Using the exact 
expression (74), we have 

(81) 

where r is a function of e‘, 4’, $‘ and 8, 4, $. To evaluate this expression we need to 
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perform the integrals 

+ two similar terms with (4 ’ ,  $’) ++ (4, $). (82) 
To d o  this we need to express r in terms of (8, 4, $) and (e ’ ,  $‘, $’) using its definition 
(71). We can take 8 = 0 and  r$ = 0 without loss of generality, so that 

Using the expansion 

and 

we find that all four terms in I ,  are identical and  

if 1 is even i (2 j -p ) !  1 6 ~  E (-1)p(2  COS'(^'/^))'-^ 
I, = 2 ’ 3 ! [ ( j  - p )  !I2 

if 1 is odd 

where we have set j = ( I  - 1)/2.  
It is now a trivial matter to prove, e.g. using Rodrigues’ formula 

1 d ’  
<(COS e’)  = - (COS’ 8 ‘ -  1)’ (87) 2 ’ j !  d(cos 0’)’ 

that 

I ,  = 1 6 ~ P , ( c o s  0’),  

Since S‘ is homogeneous we can treat the more general case, when n* does not necessarily 
have 8 = 4 = O  by replacing 8’ with the geodesic distance, y, between 9’ and  q on S2 .  

Thus the equation for the propagator of a free particle on a two-dimensional sphere 
of radius f in terms of an integral over the extended Hilbert space (64) gives 

1 “  
% - , = U  

More generally, for a 2-sphere of radius R, the result is 

(q’,  t’14, t ) = -  1 ( 2 j + l ) < ( c o s  y )  exp[ - i2 j ( j+ l ) ( t - t ’ ) ] .  (89) 

in full agreement with [12, 161. 
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6. Conclusions 

It has been shown how the use of ghosts enables the quantum mechanics of a free, 
non-relativistic particle moving on a homogeneous space Y/%! to be treated in a 
consistent manner, by considering it to be a reduced system coming from a free particle 
moving on the Lie group Y where the problem has already been solved. In particular, 
the results of [ 7 , 8 ]  ensure that the procedures of quantizing first and then reducing 
or reducing first and then quantizing actually commute. 

The propagator on 9/%! is obtained by first extending the Hilbert space for the 
problem on a Lie group to a pseudo-Hilbert space, imposing gauge conditions in a 
BRsT-invariant manner and then integrating out the redundant degrees of freedom. 
The finite-time propagator on Y is already known exactly [ 14, 151 and this allows the 
finite-time propagator on Y / B  to be evaluated in a gauge invariant manner, leading 
to equation (64) for the amplitude for a particle to propagate from q to q’ on 919 
in terms of the known amplitude to propagate from Q to Q‘ on Y’. 

The example of S2-SU(2)/U(1)  was treated explicitly and it was shown how the 
Legendre polynomials for the eigenvalue problem on S2 could be obtained from the 
eigenfunctions sin Irisin r on S’, by choosing a gauge and integrating. There is a 
subtlety in the gauge choice in that, since S 3  is a non-trivial U(1) bundle over S 2 ,  the 
gauge condition x had more than one zero on each gauge orbit and it was necessary 
to divide the amplitude by the number of zeros in order to ensure the correct normaliz- 
ation. One can expect this to be a generic feature of this procedure for calculating 
amplitudes on homogeneous spaces. 
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